

Welcome to ur_documentation

Contents:

	Examples
	Installation
	Docker setup

	Dual robot workcell
	ur_example_dual_robot
	Requirements & Build

	Startup

	Step by step explanation of a dual-robot setup
	Assembling the URDF

	Define controller configuration files for the two robots

	Create a launchfile and start drivers for both robots

	Run the demo

	Bonus: Use correct robot calibration with dual_robot setup

Examples

This chapter documents the examples created in https://github.com/UniversalRobots/Universal_Robots_ROS_Tutorials.

Those examples explain certain use cases in which the ur_robot_driver [http://wiki.ros.org/ur_robot_driver] could be used.

Contents:

	Installation
	Docker setup

	Dual robot workcell
	ur_example_dual_robot
	Requirements & Build

	Startup

	Step by step explanation of a dual-robot setup
	Assembling the URDF

	Define controller configuration files for the two robots

	Create a launchfile and start drivers for both robots

	Run the demo

	Bonus: Use correct robot calibration with dual_robot setup

Installation

The following sections will assume that you’ve created a catkin_workspace and you’ve cloned and
built the driver and examples as explained in the following.

First, create a catkin_workspace, clone the repositories and build them:

create the workspace
source /opt/ros/<your_ros_version>/setup.bash
mkdir -p catkin_ws/src && cd catkin_ws

clone all necessary repositories
git clone https://github.com/UniversalRobots/Universal_Robots_ROS_Driver.git
git clone -b calibration_devel https://github.com/fmauch/universal_robot.git
git clone https://github.com/UniversalRobots/Universal_Robots_ROS_Tutorials.git

install dependencies
sudo apt update -qq
rosdep update
rosdep install --from-paths src --ignore-src -y

build
catkin_make
source devel/setup.bash

Remember to always source your workspace (as in the last line of the code snippet above) in every new shell.

Docker setup

For most examples to work, you’ll need docker and docker-compose installed and your user needs
to be able to run docker containers. Those tools will be installed by the rosdep command above,
but you will have to setup your user to execute docker containers accordingly. See the Docker
documentation [https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user] for details.

The short version:

sudo groupadd docker
sudo usermod -aG docker $USER
log out and log back in

After that you should be able to run docker containers using your user account:

docker run --rm -it universalrobots/ursim_e-series

Dual robot workcell

Example about integrating two UR arms into one workcell. We will build a workspace description and
start two drivers for the two robots.

Contents:

	ur_example_dual_robot
	Requirements & Build

	Startup

	Step by step explanation of a dual-robot setup
	Assembling the URDF

	Define controller configuration files for the two robots

	Create a launchfile and start drivers for both robots

	Run the demo

	Bonus: Use correct robot calibration with dual_robot setup

ur_example_dual_robot

This demo is about integrating two robots into one URDF and starting a driver for both robots.

Requirements & Build

You’ll have to have the ur_robot_driver setup and installed as explained in its documentation.

To build and use this package, copy it to your catkin_workspace containing the driver, install its
dependencies using rosdep install --ignore-src --from-paths . -r -y and build your workspace as
usual.

For this demo to work, you’ll need docker and docker-compose installed and your user needs
to be able to run docker containers. Those tools will be installed by the rosdep command above,
but you will have to setup your user to execute docker containers accordingly. See the Docker
documentation [https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user] for details

Startup

You’ll need two shells: One for starting two simulated robots using docker + ursim and one for the
ROS components.

In the first shell execute

rosrun ur_example_dual_robot docker_alice_bob.sh

	Wait, until the robots are started up. You can connect to the robots using their web interface:
	
	Alice: http://10.5.0.5:6080/vnc.html

	Bob: http://10.5.0.6:6080/vnc.html

When the robots have booted, start the driver instances as follows

roslaunch ur_example_dual_robot dual_robot_startup.launch

This should startup the drivers, an RViz instance and an rqt_joint_trajectory_controller window.

To steer the robots, you’ll first have to start the external_control program on both using the web
interface (the programs should be loaded by default, simply start the robots and press the play
button). In the shell running the drivers, you should now see Robot connected to reverse interface.
Ready to receive control commands. twice.

Using the rqt_joint_trajectory_controller window you can select one of the robots, click on the big
red button and then use the sliders to move the robots around.

Step by step explanation of a dual-robot setup

This chapter explains all the steps necessary to create a dual-arm setup using the
ur_robot_driver.

In order to create a multi-robot workcell we basically have to consider three aspects:

	When integrating multiple robots into one robot_description we face one challenge: We can’t have
multiple tf frames with the same name, e.g. base_link in the same robot_description.
Therefore, we’ll have to use prefixes.

	Once the robot description uses tf prefixes, the joint names will also use those prefixes.
Therefore, we’ll need to adapt our robot controllers that they are defined on those “modified”
joint names.

	As we will be starting multiple instances of the same ROS nodes, we’ll have to take care that
their names (nodes, topics, services) do not collide. One easy way to achieve this is using ROS
namespaces

Assembling the URDF

The ur_description [https://github.com/ros-industrial/universal_robot/tree/melodic-devel-staging/ur_description] package provides macro files [https://github.com/ros-industrial/universal_robot/blob/melodic-devel-staging/ur_description/urdf/inc/ur5e_macro.xacro] to generate an instance of a Universal Robots arm. We’ll use this to assemble a description containing a Box with a UR3e and a UR10e ontop:

ur_example_dual_robot/urdf/dual_robot.xacro

 1<?xml version="1.0"?>
 2<robot xmlns:xacro="http://wiki.ros.org/xacro" name="my_work_cell">
 3 <!--Load the macro for creating a robot-->
 4 <xacro:include filename="$(find ur_description)/urdf/inc/ur10e_macro.xacro"/>
 5 <xacro:include filename="$(find ur_description)/urdf/inc/ur3e_macro.xacro"/>
 6
 7 <!--Instanciate the robots-->
 8 <xacro:ur3e_robot prefix="bob_" kinematics_parameters_file="$(arg bob_kinematics)"/>
 9 <xacro:ur10e_robot prefix="alice_" kinematics_parameters_file="$(arg alice_kinematics)" />
10
11 <!--common link where the tf tree originates from-->
12 <link name="world"/>
13
14 <!--Define the robot poses in the world-->
15 <joint name="world_to_bob" type="fixed">
16 <parent link="world" />
17 <child link = "bob_base_link" />
18 <origin xyz="-0.5 0 0" rpy="0 0 0" />
19 </joint>
20 <joint name="world_to_alice" type="fixed">
21 <parent link="world" />
22 <child link = "alice_base_link" />
23 <origin xyz="0.5 0 0" rpy="0 0 0" />
24 </joint>
25</robot>

Let’s break it down:

First, we’ll have to include the macros to generate the two arms:

ur_example_dual_robot/urdf/dual_robot.xacro

4 <xacro:include filename="$(find ur_description)/urdf/inc/ur10e_macro.xacro"/>
5 <xacro:include filename="$(find ur_description)/urdf/inc/ur3e_macro.xacro"/>

The two include lines only loaded the macro for generating robots. Next, we can call the macros to
actually create the arms.

ur_example_dual_robot/urdf/dual_robot.xacro

8 <xacro:ur3e_robot prefix="bob_" kinematics_parameters_file="$(arg bob_kinematics)"/>
9 <xacro:ur10e_robot prefix="alice_" kinematics_parameters_file="$(arg alice_kinematics)" />

This creates the two robots alice and bob. We choose their names as a tf-prefix in order to
make the link and joint names unique. Note the trailing underscore in the prefixes, as the prefixes
will be added in front of the link and joint names without adding a further underscore.

The last thing to do is connecting the two robots to our common world link by adding two fixed
joints.

ur_example_dual_robot/urdf/dual_robot.xacro

15 <joint name="world_to_bob" type="fixed">
16 <parent link="world" />
17 <child link = "bob_base_link" />
18 <origin xyz="-0.5 0 0" rpy="0 0 0" />
19 </joint>
20 <joint name="world_to_alice" type="fixed">
21 <parent link="world" />
22 <child link = "alice_base_link" />
23 <origin xyz="0.5 0 0" rpy="0 0 0" />
24 </joint>

We can view our custom workcell by running

roslaunch ur_example_dual_robot view_dual_robot.launch

Use the sliders of the joint_state_publisher_gui to move the virtual robots around. It should look
something like this:

[image: RViz window showing the dual arm setup]

Define controller configuration files for the two robots

In the last paragraph we created a description containing both robots. To avoid name clashes, both
robots got a prefix alice_ and bob_ respectively.

For using the ur_robot_driver with this description we’ll have to make sure that we load
controllers containing the joint names with the prefixes.

To keep things simple, we’ll copy the controller configuration from the ur_robot_driver and only
rename the joints inside. The following listing shows how that could be achieved, if you cloned this
repo you will already have the corresponding files.

cd <src-location-of-ur_example_dual_robot>
mkdir -p etc
roscp ur_robot_driver ur10e_controllers.yaml etc/alice_controllers.yaml
roscp ur_robot_driver ur3e_controllers.yaml etc/bob_controllers.yaml

With a text editor, we open the files and change the joint names that they contain the prefixes

ur_example_dual_robot/etc/alice_controllers.yaml

 5# Settings for ros_control hardware interface
 6ur_hardware_interface:
 7 joints: &robot_joints
 8 - alice_shoulder_pan_joint
 9 - alice_shoulder_lift_joint
10 - alice_elbow_joint
11 - alice_wrist_1_joint
12 - alice_wrist_2_joint
13 - alice_wrist_3_joint

ur_example_dual_robot/etc/bob_controllers.yaml

 5# Settings for ros_control hardware interface
 6ur_hardware_interface:
 7 joints: &robot_joints
 8 - bob_shoulder_pan_joint
 9 - bob_shoulder_lift_joint
10 - bob_elbow_joint
11 - bob_wrist_1_joint
12 - bob_wrist_2_joint
13 - bob_wrist_3_joint

Create a launchfile and start drivers for both robots

Now we have everything in place to startup two driver instances for alice and bob. The
ur_robot_driver offers different levels of abstractions inside its launchfiles. Basically, we
need the following components:

	load the description

	Driver for alice

	Driver for bob

	robot_state_publisher(s?)

First of all, loading the description can be done straight-forward:

ur_example_dual_robot/launch/dual_robot_startup

24 <include file="$(find ur_example_dual_robot)/launch/load_dual_description.launch">
25 <arg name="bob_kinematics" value="$(arg bob_kinematics)"/>
26 <arg name="alice_kinematics" value="$(arg alice_kinematics)"/>
27 </include>

If you want, ignore the two arguments passed to this launchfile for now. See
Bonus: Use correct robot calibration with dual_robot setup for details.

To start the drivers we again need to watch out for name clashes. Both drivers start the same
controllers which are using the same topics to communicate. To avoid clashes, we will start each
driver in a separate namespace. We use the ur_control.launch launchfile from ur_robot_driver
for that:

ur_example_dual_robot/launch/dual_robot_startup

29 <group ns="alice">
30 <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher"/>
31
32 <include file="$(find ur_robot_driver)/launch/ur_control.launch">
33 <arg name="use_tool_communication" value="$(arg use_tool_communication)"/>
34 <arg name="controller_config_file" value="$(arg alice_controller_config_file)"/>
35 <arg name="robot_ip" value="$(arg alice_ip)"/>
36 <arg name="reverse_port" value="$(arg alice_reverse_port)"/>
37 <arg name="script_sender_port" value="$(arg alice_script_sender_port)"/>
38 <arg name="trajectory_port" value="$(arg alice_trajectory_port)"/>
39 <arg name="kinematics_config" value="$(arg alice_kinematics)"/>
40 <arg name="tf_prefix" value="alice_"/>
41 <arg name="controllers" value="$(arg controllers)"/>
42 <arg name="stopped_controllers" value="$(arg stopped_controllers)"/>
43 </include>
44 </group>

With this, each robot will have its joint_state_controller running inside its namespace, meaning
that the joint_states topic will be inside the respecive namespaces, namely
/alice/joint_states and /bob/joint_states. Therefore, we start a robot_state_publisher
(that will convert joint_states messages into TF messages to produce up-to-date poses of each
link). This could also be done differently, e.g. by having one robot_state_publisher in the
top-level namespace and adding a joint_state_publisher [http://wiki.ros.org/joint_state_publisher#Subscribing_JointState_messages] that collects the two topics from their
namespaces into /joint_states. If you wish to have a /joint_states topic, you might want to
take that route.

Run the demo

Now, we’ve got everyting together to actually run the full demo. For running the demo you will need
a working Docker setup as explained in the Installation.

For startup you’ll need two shells: One for starting two simulated robots using docker + ursim and
one for the ROS components.

In the first shell execute

rosrun ur_example_dual_robot docker_alice_bob.sh

This will use docker-compose to start two docker containers running a simulated robot.
Wait, until the robots are started up. You can connect to the robots using their web interface:

	Alice: http://10.5.0.5:6080/vnc.html

	Bob: http://10.5.0.6:6080/vnc.html

Once the robots have booted, start them as you would with a normal robot using the red button in the
lower left corner:

[image: Starting up the ursim robot]
When the robots have booted, start the driver instances as follows

roslaunch ur_example_dual_robot dual_robot_startup.launch

This should startup the drivers, an RViz instance and an rqt_joint_trajectory_controller window.

The last thing we need to do is to start the external_control program on the robots. They have
the respective URCap already installed and a program created and loaded. Simply press the play
button on each robot to start external control from ROS.
In the shell running the drivers, you should now see Robot connected to reverse interface.
Ready to receive control commands. twice.

Using the rqt_joint_trajectory_controller window you can select one of the robots (1), select the
controller to use (2, it should just be one) click on the big red button (3, it will turn green as
shown in the image) and then use the sliders to move the robots around.

[image: Move the robots around using the rqt_joint_trajectory_controller GUI.]

Bonus: Use correct robot calibration with dual_robot setup

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to ur_documentation

 		
 Examples

 		
 Installation

 		
 Docker setup

 		
 Dual robot workcell

 		
 ur_example_dual_robot

 		
 Step by step explanation of a dual-robot setup

_images/rviz.png
X

bob_shouider_pan_joint

bob_shoulder_ift_joint

bob_elbow_joint

bob_wrist_1_oint

bob_wrist_2_joint

bob_wrist_3_oint

1.01 | alice_shouider_pan joint
2,63 | alice_shoulder_Iftjoint
2.76 | alice_elbow_joint

353 | alice_wrist_1_joint

4.80 | alice_wrist_2_joint

5.82 | alice_wrist_3_joint
Randomize

Center

208

157

195

388

483

228

<

L

File Panels Help

(™ Interact “$* Move Camera J Select =3 Measure 2D Pose Estimate >

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Sh 31 fps

_images/ursim_startup.png
Robot Status

Booting

external_control [3
default :

Brake Robot
Release Operational

@ ON

Confirm if Installation and Paylba

Payload

A Active Payload i used to temporarily overwrite the Installation Payload.

re correct and press the ON button to start.

Active Payload ‘~/ Payload

Payload

O Power off

Simulatior

_images/robot_steering.png
File Panels Help EBJoint trajectory controller DB -0

™) Interact *&* Move Camera Select == Measure > =
controller manager ns controller
/alice/controller_manager v || scaled_pos_joint_traj_controller v
0)
joints
alice_elbow_joint -1,95 C
alice_shoulder_lift_jOINt o 1,73 C
< alice_shoulder_pan_joint —;y -0,75 C
alice_WISt_1_jOINt ot 081 O
BT L1 | S — 1,60 C
EU T e LT | S — 0,03
speed scaling
— s0% O

Reset 31 fps

_static/file.png

_static/minus.png

_static/plus.png

